Forecasting smoked rubber sheets price based on a deep learning model with long short-term memory

نویسندگان

چکیده

<span>This research aimed to create suitable forecasting models with long-short term memory (LSTM) from time series data, the price of rubber smoked sheets (RSS3) using 2,631 data Rubber Authority Thailand for past 10 years. The was divided into two sets: first 2,105 points were used LSTM prediction model; second 526 estimate performance root mean square error (RMSE), absolute percentage (MAPE), and accuracy rate model. results showed that most model a total 9 layers comprised 3 primary LSTMs. Each layer has number neurons 100, 150, 200 obtain an optimal neural network technique. epochs iteration 30, 40, 50. Dropout between each have probability 30%. test measure 9-layer architecture gave best forecast, RMSE 2.4121, MAPE 0.0413 95.88% rate.</span>

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

mortality forecasting based on lee-carter model

over the past decades a number of approaches have been applied for forecasting mortality. in 1992, a new method for long-run forecast of the level and age pattern of mortality was published by lee and carter. this method was welcomed by many authors so it was extended through a wider class of generalized, parametric and nonlinear model. this model represents one of the most influential recent d...

15 صفحه اول

Time Series Forecasting Based on Augmented Long Short-Term Memory

In this paper, we use variational recurrent model to investigate the time series forecasting problem. Combining recurrent neural network (RNN) and variational inference (VI), this model has both deterministic hidden states and stochastic latent variables while previous RNN methods only consider deterministic states. Based on comprehensive experiments, we show that the proposed methods significa...

متن کامل

Traffic Prediction Based on Random Connectivity in Deep Learning with Long Short-Term Memory

Traffic prediction plays an important role in evaluating the performance of telecommunication networks and attracts intense research interests. A significant number of algorithms and models have been put forward to analyse traffic data and make prediction. In the recent big data era, deep learning has been exploited to mine the profound information hidden in the data. In particular, Long Short-...

متن کامل

the effect of teaching vocabulary through memory learning strategies on iranian intermediate efl learners long-term vocabulary retention

بسیاری از دبیران و دانش آموزان بر این باورند که یادگیری لغات آسان است و شیوه های مختلفی برای یادگیری وجود دارد گرچه یادآوری لغات پس از مدت طولانی بسیار دشوار و پرزحمت است . هدف از این تحقیق آن است که تاثیر استراتژی های حافظه بر روی نگهداری بلند مدت لغات در زبان آموزان خانم سطح متوسط در ایران را بررسی کند. قبل از شروع تدریس، آزمون تعیین سطحی به منظور داشتن زبان آموزان یک سطح برگزار شده و بر اساس...

the effects of keyword and context methods on pronunciation and receptive/ productive vocabulary of low-intermediate iranian efl learners: short-term and long-term memory in focus

از گذشته تا کنون، تحقیقات بسیاری صورت گرفته است که همگی به گونه ای بر مثمر ثمر بودن استفاده از استراتژی های یادگیری لغت در یک زبان بیگانه اذعان داشته اند. این تحقیق به بررسی تاثیر دو روش مختلف آموزش واژگان انگلیسی (کلیدی و بافتی) بر تلفظ و دانش لغوی فراگیران ایرانی زیر متوسط زبان انگلیسی و بر ماندگاری آن در حافظه می پردازد. به این منظور، تعداد شصت نفر از زبان آموزان ایرانی هشت تا چهارده ساله با...

15 صفحه اول

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Power Electronics and Drive Systems

سال: 2023

ISSN: ['2722-2578', '2722-256X']

DOI: https://doi.org/10.11591/ijece.v13i1.pp688-696